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Rigorous Theory of the Quantum Electromagnetic
Field in the Presence of Quantum Sources

Jan Naudts1 and Wojciech De Roeck1,∗

We give a rigorous description of a model of the quantized electromagnetic field inter-
acting with quantized current fields. In the special case of classical currents our results
agree with common knowledge about the problem. A toy model of a quantum current
is studied as well.

KEY WORDS: quantized electromagnetic field; classical current; quantum current;
covariance systems.

1. INTRODUCTION

The traditional approach to quantum electrodynamics starts with the theory
of free photons, respectively free electrons. Next, interactions are introduced. They
are treated using scattering theory, making the assumption that particles are free
in the large time limit. It is well known that the resulting theory suffers from in-
trinsic difficulties, such as infrared and ultraviolet divergences. Here we show how
to describe in a rigorous manner an electromagnetic (e.m.) field interacting with
quantized current fields. In principle, these fields might be generated by Dirac
electron fields. However, we prefer to avoid the difficulties of fully quantized
electrodynamics by delaying the rigorous formulation of electron fields to a forth-
coming paper. The integration of both models into a mathematically acceptable
theory of QED remains an open problem.

Important for the rigorous formulation of the problem at hand is the choice
of method for quantizing the e.m. field. As shown quite some time ago (Carey,
Gaffney, and Hurst, 1977), the method of Fermi can be made rigorous. The essence
of Carey, Gaffney, and Hurst (1977) has been picked up in Kuna and Naudts (2002)
and was used to give an elegant formulation of quantized free e.m. fields using the
formalism of covariance systems (Naudts and Kuna, 2001). In particular, free-field
operators are smeared out using test functions satisfying the continuity equation.
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By doing so they become gauge independent (Kibble, 1968) and the difficult
problem of gauge covariance of the quantized theory is avoided.

Next a model is needed for the current fields. Given any such fields one
can construct vector potential fields by integrating the currents with the Green’s
function of the d’Alembert equation. These vector potential fields can be described
in a similar way as the free-field potentials. This is the basis for the present paper.
The quantized e.m. fields and the currents are described simultaneously by a single
covariance system. An essential property of such a covariance system is that only
minimal information is needed about the properties of the two subsystems and of
their interaction, because such information is encoded in the states of the system,
which are determined by their correlation function. To illustrate this point we
discuss states describing quantized e.m. fields interacting with classical currents
and show that in this case we recover known results. But we discuss also states
describing genuine interaction with arbitrary current fields.

The structure of the paper is as follows. Sections 2, 3, and 4 serve as a
technical introduction. Our basic ansatz is made in Section 5. Section 6 contains
two propositions exploring the consequences of this ansatz. Sections 7 and 8 show
that our results are in agreement with results of the standard approach. In Section 9
we introduce a simplified model of quantum currents. The physical interpretation
of radiation fields of this model follows in Section 10. Finally, Section 11 draws
some conclusions. Two Appendices contain some further technical matters.

2. TEST FUNCTIONS

In photon theory a number of pitfalls have to be avoided and some choices
have to be made. To begin with, it is well known that the field operators Âµ(q) do
only exist in a distributional sense. Therefore, smeared-out operators are defined
by

Â( f ) =
∫

R
4

dq f µ(q) Âµ(q) (1)

The fµ(q) are test functions reflecting the experimental inaccuracy to select a single
point of Minkowski space. The Fourier-transformed function f̃ µ(k) satisfies

fµ(q) = (2π )−2
∫

R
4

dk f̃ µ(k)e−iqνkν (2)

From the reality of fµ(q) follows that f̃ µ(k) = f̃ µ(−k).
Following Kibble (1968) and Kuna and Naudts (2002) , we assume that the

test functions satisfy the Fourier-transformed continuity equation

kµ f̃ µ(k) = 0 (3)
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A justification is given in Appendix A. This assumption is essential in the present
formalism to control problems with gauge invariance of the theory.

In what follows the space of test functions fµ is denoted G. It consists of real
functions fµ(q) whose Fourier transform satisfies (3). For technical reasons, we
assume that the Fourier-transformed functions are continuous and vanish outside
a bounded region.

3. CLASSICAL WAVE FUNCTIONS

It is tradition to introduce a complex Hilbert space of so-called classical wave
functions of the photon. The space G is only a real space, because of the condition
that fµ(q) is real, while the classical wave functions form a complex pre-Hilbert
space H . These are square integrable complex functions φµ(k), defined for k in
R

3, satisfying

|k|φ0(k) =
3∑

α=1

kαφα(k) (4)

With each test function fµ(q) corresponds a classical wave function φµ(k) by the
relation

φµ(k) =
√

2π f̃ µ(|k|, k), k ∈ R
3 (5)

The (degenerate) scalar product for classical wave functions is given by

〈φ | ψ〉 = −
∫

R3
dk

1

2|k| φµ(k)ψµ(k) (6)

Positivity of this scalar product follows because the classical wave functions satisfy
(4). Indeed, one has

〈φ | φ〉 = −
∫

R
3

dk
1

2|k|3
(

|k|2|φ0(k)|2 − |k|2
3∑

α=1

|φα(k)|2
)

=
∫

R
3

dk
1

2|k|3
3∑

α,β=1

[δαβ |k|2 − kαkβ] φα(k)φβ(k)

≥ 0 (7)

The latter holds because the matrix with elements δαβ |k|2 − kαkβ is positive definite
for all values of k. We conclude that the classical wave functions form a pre-Hilbert
space H .
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4. CORRELATION FUNCTION DESCRIPTION OF E.M. FIELDS

The smeared-out field operators, which will be constructed later on, satisfy
the canonical commutation relations

[ Â( f ), Â(g)]− = −2i Im〈φ | ψ〉 (8)

whereφ andψ are the classical wave functions determined by f and g, respectively.
The displacement operators are defined by

Ŵ ( f ) = exp(i Â( f )) (9)

They satisfy the Weyl form of commutation relations

Ŵ ( f )Ŵ (g) = ei Im〈φ|ψ〉Ŵ ( f + g) (10)

and generate an algebra which is not the algebra of canonical commutation relations
(Petz, 1990) because the symplectic form

f, g → Im 〈φ | ψ〉 (11)

is clearly degenerate.
We need several distinct representations of this algebra. Free photon fields

are described by field operators in Fock space. On the other hand, if the presence
of an external current produces an infrared divergency, then a representation is
needed which differs from the Fock representation. The obvious way to handle
such a situation is by means of correlation functions. They determine the Hilbert
space representation uniquely by means of the GNS representation theorem.

Instead of working with mathematical states of the C∗-algebra of canonical
commutation relations (Petz, 1990) we work with the correlation function formal-
ism of Naudts and Kuna (2001). The basic quantity is the two-point correlation
function F( f, g), defined for any pair of test functions f and g in G. In a Hilbert
space representation with state vector �, it has the following meaning

F( f, g) = 〈Ŵ (g)∗� | Ŵ ( f )∗�〉 (12)

The scalar product between two vectors � and  of the Hilbert space is denoted
〈 | �〉 and is complex linear in �, antilinear in .

From (12) it is obvious that the correlation function F( f, g) is nothing but
the inner product between two coherent states, one with state vector Ŵ ( f )∗�,
the other with state vector Ŵ (g)∗�. The characterizing properties of correlation
functions are in the present context

• (normalization) F(0, 0) = 1;
• (positivity)

∑
j,k λ jλkF( f j , fk) ≥ 0 for all finite sequences of complex

numbers λ1, . . . , λn and of elements f1, . . . , fn of G.
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• (covariance) There exists a symplectic form σ over G such that

F( f + h, g + h) = eiσ ( f −g,h)F( f, g) (13)

holds for all f , g, h in G.

The general definition of states of a covariance system contains also a require-
ment of continuity. However, the additive group of test functions G, + is equipped
with the discrete topology. Hence, continuity of the map f, g → F( f, g) is always
satisfied.

In particular, the correlation function for the vacuum state of the free photon
field is given by Kuna and Naudts (2002)

F( f, g) = e〈φ|ψ〉e−(1/2)〈φ|ψ〉e−(1/2)〈ψ |ψ〉

= eiσ ( f,g)e−(1/2)s( f −g, f −g) (14)

with

σ ( f, g) = Im〈φ | ψ〉
s( f, g) = Re〈φ | ψ〉 (15)

Here, φ and ψare the classical wave functions determined by f and g, respectively.
Expression (14) satisfies all requirements for being a correlation function—see
Appendix B. By the generalized GNS theorem (Naudts and Kuna, 2001) there
exists a projective representation Ŵ ( f ) of the group G in a Hilbert space H, and
a vector � in H, such that (12) holds.

5. DESCRIBING QUANTIZED CURRENTS

The currents ĵµ(q), given as operator-valued distributions in a Hilbert space
H , can be used to construct vector potentials Âj

µ(q) by

Âj
µ(q) = −

∫
dq ′�G(q ′ − q) ĵµ(q) (16)

where �G(q) is a Green’s function of the d’Alembert equation, i.e., is a solution
of

�q�G(q) = −δ4(q) (17)

One can take �G(q) equal to Feynman’s propagator for massless bosons (47). The
formal equation

�q Âj
µ(q) = ĵµ(q) (18)
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is satisfied by construction. After smearing out with test functions one obtains

Âj( f ) = −
∫

dq
∫

dq ′ f µ(q)�G(q ′ − q) ĵµ(q ′) (19)

Given these operators one can reconstruct the current fields by applying the
d’Alembert operator. Indeed, introduce the notation

τa fµ(q) = fµ(q − a) (20)

Then, one has formally

�a Âj(τa f ) =
∫

dq f µ(q − a) ĵµ(q)

≡ ĵ(τa f ) (21)

Note that the free-field operators Â( f ) satisfy the homogeneous equation

�a Â(τa f ) = 0 (22)

As a consequence, two free-field operators Â( f ) and Â(g) are equal if they deter-
mine the same classical wave function (modulo the null space of H). This property
is in general not true for the operators Âj( f ). Nevertheless one can use the formal-
ism of covariance systems to describe these Âj( f ) in a similar way as for describing
free-field operators. Introduce the notation

Ŵ j( f ) = exp (i Âj( f )) (23)

and assume that a correlation function F j( f, g) is given such that in the GNS
representation one has

F j( f, g) = 〈Ŵ j(g)∗� | Ŵ j( f )∗�〉 (24)

The current operators ĵ( f ) are fully specified by this correlation function. Exam-
ples of such functions are given below.

6. INTERACTING FIELDS

Let us now construct an interacting field operator ÂI
µ(q) which is the sum of

the free-field operator Âµ(q) and of the field Âj
µ(q) produced by the current. The

latter two are described by the correlation functionsF( f, g), respectivelyF j( f, g).
These have to be combined into a single correlation function F I( f, g), the GNS
representation of which contains Weyl operators satisfying

Ŵ I( f ) = exp(i ÂI( f )) = exp(i( Â( f ) + Âj( f ))) (25)

An easy way to produce correlation functions with the desired properties
starts from correlation functions F×( f, f ′; g, g′) of the covariance system with
group G × G. By taking the diagonal of such a function, one obtains a correlation
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function of the covariance system with group G

F I( f, g) = F×( f, f ; g, g) (26)

The GNS representation induced by F I( f, g) can be obtained from that induced
by F×( f, f ; g, g).

The simplest class of correlation functions of the product system consists of
functions of the form

F×( f, f ′; g, g′) = exp(iσ×( f, f ′; g, g′))

× exp

(
−1

2
s×( f − g, f ′ − g′; f − g, f ′ − g′

)
(27)

with s×( f, f ′; g, g′) a real inner product of G × G and with σ×( f, f ′; g, g′) a
symplectic form of G × G such that

( f, f ′; g, g′) = s×( f, f ′; g, g′) + iσ×( f, f ′; g, g′) (28)

defines a positive-definite sesquilinear form of G × G. These are analogues of
the quasi-free states of Petz (1990). Interaction between e.m. field and current is
supposed to be such that

F×( f, 0; g, 0) = F( f, g)

F×(0, f ′; 0, g′) = F j( f ′, g′) (29)

Let the GNS representation induced by F×( f, f ′; g, g′) satisfy

F×( f, f ′; g, g′) = 〈Ŵ ×(g, g′)∗� | Ŵ ×( f, f ′)∗�〉 (30)

Introduce generators ÂI( f ), Â( f ), and Âj( f ) by

Ŵ ×( f, f ) = Ŵ I( f ) = exp(i ÂI( f ))

Ŵ ×( f, 0) = exp(i Â( f )) (31)

Ŵ ×(0, f ) = exp(i Âj( f ))

By construction is ÂI( f ) = Â( f ) + Âj( f ). The commutation relations for the
operators Ŵ I( f ) are

Ŵ I( f )Ŵ I(g) = eiσ 1( f,g)Ŵ I( f + g) (32)

The symplectic form appears in the r.h.s. of the commutation relations

[ ÂI( f ), ÂI(g)]− = −2iσ×( f, f ; g, g) = −2iσ I( f, g)

[ Â( f ), Â(g)]− = −2iσ×( f, 0; g, 0)

[ Âj( f ), Âj(g)]− = −2iσ×(0, f ; 0, g) (33)

[ Â( f ), Âj(g)]− = −2iσ×( f, 0; 0, g)
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7. CLASSICAL CURRENTS

In the simplest case the currents ĵµ(q) are multiples of the identity operator.
Then, the operators Ŵ j( f ′) and Ŵ j(g′) can be taken out of the inner product of
(24). A suitable guess is therefore

F j( f, g) = exp(i Ac1(g − f )) (34)

with

Âc1( f ) = −
∫

dq
∫

dq ′ f µ(q)�G(q ′ − q) jµ(q ′) (35)

It is straighforward to verify that this function satisfies all requirements for being
a correlation function.

Equation (34) allows very general classical potentials. Take, e.g., the Coulomb
potential

Ac1
µ (q) = δµ,0

c

|q| (36)

where c is a constant, and where q = (q0, q). Eq. (35) is satisfied with external
current

jµ(q) = δµ,04πcδ3(q) (37)

This means that a static charge of strength 4πc is located at the origin of space.
The occurrence of a divergency in (36) does not produce any problem because it
enters Eq. (34) in a form smeared out with test functions.

Note that σ j( f, g) = 0. The commutation relations (33) suggest to take

σ×( f, 0; 0, g) = σ×(0, f ′; 0, g) = 0 (38)

It is still possible to include nontrivial correlations between the classical currents
and the free-field operators by means of the inner product s×( f, f ′; g, g′). However,
standard results about quantized e.m. fields in the presence of classical currents
are recovered when the choice

σ×( f, f ′; g, g′) = σ ( f, g) + Ac1(g − f )

s×( f, f ′; g, g′) = s( f, g) (39)

is made
All together, the correlation function of the classical current model reads

F I( f, g) = F( f, g)F j( f, g) (40)

with F( f, g) given by (14) and F j( f, g) given by (34). Such a simple product
form reflects the known fact that the classical current model does not contain any
interactions. By this is meant that in a Heisenberg picture the Hamiltonian is the
sum of two free parts, without additional interaction term.
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In the current model the interacting field operator equals the sum of the free-
field operator and the classical potential generated by the external current

ÂI( f ) = Â( f ) + Ac1( f )Î (41)

This property is known in the literature—see e.g., Eq. (2.63) of Peskin and
Schroeder (1995). Still, many handbooks use the classical current model to il-
lustrate the scattering approach of QED, without mentioning (41). For sake of
completeness we discuss some results of the scattering context in the next section.

Note that the field operators ÂI( f ) have some unusual properties. From (41),
it is clear that they satisfy the same canonical commutation relations as the free-
field operators. But the representation depends intrinsically on the details of the
external current. Indeed, a shift in spacetime may map a nonzero field operator
onto zero. This means that the shifted representation is not unitary equivalent with
the original representation.

Let us analyze this point in somewhat more detail. A field operator ÂI( f )
vanishes if and only if Acl( f ) = 0 and 〈φ | φ〉 = 0, where φ is the classical wave
function associated with f . Now, if the current jµ(q) is not trivial, then there exists
a test function f for which Ac1( f ) �= 0 and 〈φ | φ〉 = 0 holds. If the current is lo-
calized in part of spacetime then shift the test function with a vector a so that τa f
vanishes in that part of spacetime where the current does not vanish. The result is
that Acl(τa f ) = 0. Because f and τa f determine the same classical wave function
up to a phase factor one concludes that ÂI( f ) �= 0 while ÂI(τa f ) = 0.

8. RADIATION FIELDS

Let us first verify what happens if Acl( f ) is a solution of the homogeneous
d’Alembert equation, i.e., the current vanishes. Then, one can write

Acl( f ) =
∫

R
3

dk
1

2|k| (aµ(k)φµ(k) + aµ(k)φµ(k))

= −2 Re〈a | φ〉 (42)

with φ the classical wave function determined by the test functions f and with

aµ(k) = 1√
2π

Ãcl
µ(|k|, k) (43)

Hence, the correlation function can be written as

F I( f, g) = F( f, g) exp(−2i Re〈a | ψ − φ〉)
= exp(i Im〈φ + 2ia | ψ + 2ia〉) exp(−(1/2)〈φ − ψ | φ − ψ〉) (44)

In this expression the Fourier-transformed classical potential a, when multiplied
with 2i , behaves as a Fourier-transformed test function. This relation is a duality
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between test functions and fields and has been studied in Kuna and Naudts (2002).
In particular, the definition of field operators Â( f ) can be extended to complex
arguments. Hence, one can write

F I( f, g) = F( f + iπ−1 Acl, g + iπ−1 Acl)

= 〈Ŵ (g + iπ−1 Acl)∗� | Ŵ ( f + iπ−1 Acl)∗�〉
= 〈�(Acl) | Ŵ (g)Ŵ ( f )∗�(Acl)〉 (45)

with

�(Acl) − Ŵ (i(2π )−1 Acl)∗� (46)

To obtain the latter use that Ŵ ( f + 2g) = Ŵ (g)Ŵ ( f )Ŵ (g). This shows that in
this case the correlation functions (40) are those of a coherent state, as expected
from conventional photon theory.

Next let us make a link with the scattering approach. Consider a classical field
Acl

µ(q) which vanishes for very negative times q0 � 0. This implies that jµ(q) = 0
for very negative times. Assume that jµ(q) = 0 holds also for very positive times
q0 � 0. Then, Acl

µ(q) for q0 � 0 is the radiation field produced by currents jµ(q)
which are only active during a finite interval of time q0. This radiation field can be
expressed in terms of the current using the Feynman’s propagator

DF (q) = 1

(2π )4

∫
R

4
dk

1

kνkν

e−ikµqµ (47)

which is a Green’s function of the d’Alembert equation. One finds

Acl
µ(q) = Ahom

µ (q) −
∫

dq ′ jµ(q ′)DF (q − q ′)

= Ahom
µ (q) − 1

(2π )2

∫
R

4
dk

1

kνkν

e−ikλqλ j̃µ(k) (48)

where Ahom
µ (q) is a solution of the homogeneous d’Alembert equation. Because

of the assumption that Acl
µ(q) = 0 when q0 � 0, one must have

Ahom
µ (q) = 1

(2π )2

∫
R

4
dk

1

kνkν

e−ikλqλ j̃µ(k), q0 � 0 (49)

The latter equation can be written as

Ahom
µ (q) = − 1

(2π )
Im

∫
R

3
dk

1

2|k|ei |k|q0 eik·q j̃µ(|k|, k) (50)

In this form the expression is valid for all q . Indeed, one checks immediately that
this is a solution of the homogeneous d’Alembert equation. For q0 � 0 one finds
Acl

µ(q) = 0 by construction, for q0 � 0 one has Acl
µ(q) = 2Ahom

µ (q).
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Smearing out Ahom
µ (q) with a test function f one obtains (see (42))

Ahom( f ) = 1

2π
Im〈φ | a〉 (51)

with φ the classical wave function determined by the test functions f , and with

aµ(k) = 1√
2π

j̃µ(|k|, k) (52)

Hence, for test functions with support lying far in the future one has

Acl( f ) = 1

π
Im〈φ | a〉 (53)

The correlation function (40) for a pair of such functions reads

F I( f, g) = F( f, g) exp((i/π ) Im〈ψ − φ | a〉) (54)

Compare this with

〈Ŵ (g)∗Ŵ (v)∗� | Ŵ ( f )∗Ŵ (v)∗�〉
= exp(i Im〈φ − ψ | ξ〉)〈Ŵ (v + g)∗� | Ŵ (v + f )∗�〉
= exp(i Im〈φ − ψ | ξ〉)F(v + f, v + g)

= exp(2i Im〈φ − ψ | ξ〉)F( f, g) (55)

where ξ is the classical wave function corresponding with the test function v .
The two expressions coincide provided there exists a test function v such that
ξ = −a/2π holds. If this is the case, then the radiation field is described by the
coherent state with wave vector Ŵ (v)∗�. This coincides with the standard result
that, up to a phase factor, the S-matrix is a displacement operator, and the radiative
field is a coherent state—see e.g., (Bial�ynicki-Birula and Bial�ynicki-Birula, 1975),
Section 13. The problem is not the appearance of a complex test function, which
has been explained above, but the possibility of an infrared divergency. Indeed,
a test function v , such that ξ = −a/2π holds, will not always exist. One can of
course try to approximate aµ(k) = j̃µ(|k|, k)/

√
2π by classical wave functions ξn .

However, this will work only if

〈a | a〉 = − 1

2π

∫
R

3
dk

1

2|k| j̃µ(|k|, k) j̃µ(|k|, k) (56)

is finite. This is precisely the condition for absence of infrared divergency found in
(Bial�ynicki-Birula and Bial�ynicki-Birula, 1975), Section 13, in case of an example.
For recent progress on the infrared divergency problem in the context of Nelson’s
model see Arai (2001) and Lörinczi, Minlos, and Spohn (2002).
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9. QUANTUM CURRENTS

Let us now consider a simplified model of quantum currents. Start with cre-
ation and annihilation operators b̂∗ and b̂ of a harmonic oscillator. They satisfy the
canonical communication relations

[b̂, b̂∗]− = 1 (57)

Let the given complex functions αµ(q) satisfy the continuity equation

∂µαµ(q) = 0 (58)

They are used to define currents j̃µ(q) by the relation

ĵµ(q) = αµ(q)b̃∗ + αµ(q)b̂ (59)

The smeared-out potentials (19) become

Âj( f ) = y( f )b̂∗ + y( f )b̂ (60)

with

y( f ) = −
∫

dq
∫

dq ′ f µ(q)�G(q ′ − q)αµ(q ′) (61)

They satisfy commutation relations

[ Âj( f ), Âj(g)]− = −2iσ j( f ; g) (62)

with

σ j( f, g) = Im(y( f )y(g)) (63)

Let � denote the ground state of the harmonic oscillator. It satisfies b� = 0
and determines the correlation function F j( f, g) via (24). One obtains by means
of standard calculation

F j( f, g) = exp(−iσ j( f, g)) exp(−(1/2)s j( f − g, f − g)) (64)

with

s j( f, g) = 1

2
(y( f )y(g) + y(g)y( f )) (65)

In this state the quantum expectation of the current ĵµ(q) vanishes. The second
moments equals

〈� | ĵµ(q) ĵν(q ′)�〉 = αµ(q)αν(q ′) (66)
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The interaction between photons and currents is modeled by assuming the
existence of a real-linear function x( f ) such that

[b, Â( f )]− = x( f )I (67)

This implies

σ×( f, 0; 0, g′) = i

2
[ Â( f ), Âj(g′)]−

= Im (x( f )y(g′)) (68)

The obvious choice of sympletic form σ×( f, f ′; g, g′) is then

σ×( f, f ′; g, g′) = σ ( f, g) + σ j( f ′; g′)

+ Im x( f )y(g′) + Im y( f ′)x(g) (69)

The positivity requirement (28) suggest now to define

s×( f, f ′; g, g′) = s( f, g) + s j( f ′, g′)

+ Re x( f )y(g′) + Re y( f ′)x(g) (70)

Positivity is satisfied provided

|x( f )|2 ≤ s( f, f ) = 〈φ | φ〉 (71)

This implies the existence of functions f (1)
x and f (2)

x satisfying

s
(

f (1)
x , f (1)

x

) + s
(

f (2)
x , f (2)

x

) ≤ 1 (72)

for which

x( f ) = s
(

f (1)
x , f

) + is
(

f (2)
x , f

)
(73)

The symplectic form σ×( f, f ′; g, g′) and the bilinear form s×( f, f ′; g, g′)
together determine the correlation function F×( f, f ′; g, g′) via (27), and a corre-
sponding state of the covariance system with group G × G. The diagonal F I( f, g)
described a state of the quantized e.m. field interacting with a quantum current. It
is the latter state which is analyzed below.

10. A QUANTUM SOURCE OF E.M. RADIATION

First of all note that state determined by F I( f, g) from a classical point of
view described always a vacuum. Indeed, from

F I( f, 0) = F( f, 0)e(1/2)|x( f )|2 e−(1/2)|x( f )−y( f )|2 (74)

follows by expansion to first order in f that

〈AI( f )〉 = 0 (75)
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The latter quantity is the classical part of the smeared-out e.m. vector potential.
That it vanishes is in aggreement with the pure quantum nature of the currents
ĵµ(q) whose quantum expectation vanishes as well.

Next consider the scattering situation with a current localized in space-time,
i.e., αµ(q) = 0 outside some bounded region in the vicinity of the origin of space-
time. In addition, let the Green’s function �G(q) in (61) be the retarded Green’s
function. Then y( f ) = 0 holds for all f with support in the far past. As a conse-
quence, for f ′, g′ with support in the far past isF×( f, f ′; g, g′) = F( f, g). Hence,
the state of the systems in the past is the vacuum of the free e.m. field.

The function y( f ) does not vanish for all f with support in the future, even
when αµ(q) is again zero. in other words, the quantum current produces a radiation
field. A first observation is that this radiation field cannot be coherent because the
square of y( f ) appears in (64). This is also obvious from (75). Nontrivial quantum
fluctuations are present, as can be seen by expanding F I( f, g) to first order in f
and g

〈 ÂI(g) ÂI( f )〉 = 〈φ | ψ〉 − x( f )y(g) − y( f )x(g) + y( f )y(g) (76)

The first term in the r.h.s. are the vacuum fluctuations. The last term describes
field fluctuations which are identical to those of a classiscal radiation field. This
leads to the remarkable observation that in this model quantum currents produce
e.m. fields which propagate like classical radiation fields. They differ from them
because their quantum expectation vanishes. Whether such quantum radiation
fields exist in nature is not immediately clear. In more sophisticated models one
can expect that these quantum radiation fields will survive in some sence. Indeed,
any quantum current ĵµ(q) can be decomposed into the sum of a classical current
〈 ĵµ(q)〉 and a remainder with vanishing average. Now assume that the interacting
field operators ÂI

µ(q) satisfy the d’Alembert equation. Then, by linearity, the field
operators decompose into the sum of a field produced by the classical current and
a remainder without classical analogue, of the type found in the present model.

A limitation of the model is that the quantum current is described by one
single harmonic oscillator. As a consequence, the interacting field operators ÂI( f )
satisfy unsatisfactory commutation relations (see (33) and (69))

[ ÂI( f ), ÂI(g)]− = 2iσ I( f, g) (77)

with

σ I( f, g) = σ ( f, g) − Im x( f )x( f )

+ Im(x( f ) + y( f ))x(g) + y(g)) (78)

It is tempting is modify the model is such a way that the first two contributions to
σ I( f, g) cancel. One can hope that in such a modified model the energy density
of the vacuum, which is infinite in the absence of interactions, becomes finite in
presence of quantum fields produced by quantum currents.
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11. CONCLUSIONS

The present paper develops a rigorous theory for quantized e.m. fields inter-
acting with given current fields. The formalism of covariance systems is used. The
main tool in this approach is the vacuum-to-vacuum correlation function. It is not
assumed a priori that the field operators are those of the noninteracting theory.
Instead, they are the sum of the free-field operator and of a field operator, which is
the solution of the d’Alembert equation with the given quantum current as source
term.

The theory has been applied to two simple models, the first of which is the
well-known model of quantized e.m. fields interacting with a classical current.
We show that our approach agrees with the standard results. In case the currents
vanish outside a finite part of spacetime then our result describes radiation fields
which correspond with coherent states, at least, if no infrared divergency occurs.
The second model describes a current whose quantum expectation vanishes. It
produces a radiation field whose quantum expectation vanishes as well. More
sophisticated models are expected to produce similar results.

Our main conclusion is that the algebra of field operators depends on details
of the applied current. In this aspect our work goes beyond other approaches based
on fixed algebraic structures and their representations. The emphasis on correlation
functions solves the related technical problems in an elegant way.

Field operators in the present paper are smeared out with test functions over
spacetime, and not with test functions over three-dimensional space, as is often
done. We were not able to make a transition between these two approaches. In
particular, we did not obtain a Heisenberg picture with a Hamiltonian, dependent
on the external current, describing the time evolution of field operators smeared out
with test functions over three-dimensional space. If it turns out that such description
does not exist, then this is bad news for the standard approach, based on scattering
theory, which takes the existence of an interaction picture for granted.

The present work opens perspectives which may eventually lead to a rigorous
formalism of quantum electrodynamics. The next step to take along the lines of
the present paper is a rigorous description of a field of Dirac electrons interacting
with a classical e.m. field. The algebra of Dirac currents is more complicated than
what is supported by the present paper. The resulting technical problems have to
be solved as well.

APPENDIX A

Here, we give a justification for assumption (3).
Assume two vector potentials differ only by a gauge transformation

A′
µ(q) = Aµ(q) + ∂µX (q) (A.1)

with X (q) an arbitrary solution of the d’Alembert equation. Then, the smeared-out
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fields satisfy

A′( f ) − A( f ) =
∫

R
4

dq f µ(q)∂µX (q)

= i
∫

R
4

dk X̃ (−k) f̃ µ(k)kµ (A.2)

Since the two vector potentials are physically equivalent, it should not be possible
to distinguish them by means of the test function f . The condition A′( f ) = A( f )
implies then that (3) must hold for all wave vectors k satisfying kµkµ = 0.

Assume now that g̃µ(k) satifies kµg̃µ(k) = 0 whenever kνkν = 0, in such a
way that the function

X (k) = 1

kνkν

kµg̃µ(k) (A.3)

remains continuous. Then, one can decompose g̃µ(k) into parts parallel and or-
thogonal to the wave vector

g̃µ(k) = f̃µ(k) + kµX̃ (k) (A.4)

where f̃µ(k) satisfies (3) for all k. One verifies immediately that A(g) = A( f )
holds for any vector potential A. Hence, we can always chose the test functions f ,
satisfying (3) for all k, as representative for a whole class of equivalent test functions
g, satisfying (3) when kµkµ = 0, and such that (A.3) remains continuous.

APPENDIX B

Here, we show that the correlation function (14) satisfies the necessary con-
ditions. The extension of the arguments to correlation function (40) is straight-
forward.

Normalization F(0, 0) = 1 is clear. Positivity follows from

∑
mn

λnλnF( fm , fn) =
∑
mn

λnλn e〈 fm | fn〉 e−(1/2)〈 fm | fm 〉 e−(1/2)〈 fn | fn〉

=
∑
mn

µnµne〈 fm | fn〉 (B.1)

with

µm = λm e−(1/2)〈 fm | fm 〉 (B.2)

Note that the matrix with elements 〈 fm | fn〉 is positive definite. Hence, positivity
of (B.1) follows by means of Schur’s lemma.
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Finally, covariance follows from

F( f + h, g + h) = ei Im〈 f +h|g+h〉 e−(1/2)〈 f −g| f −g〉

= ei Im〈h|g〉ei Im〈 f |h〉F( f, g) (B.3)
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